
Load Balancing Strategies for

Multi-Block Overset Grid Applications

NAS-03-007

M. Jahed Djomehri

Computer Sciences Corporation, NASA Ames Research Center, Moffett Field, CA 94035

Rupak Biswas

NAS Division, NASA Ames Research Center, Moffett Field, CA 94035

Noe Lopez-Benitez

Department of Computer Science, Texas Tech University, Lubbock, TX 79409

Abstract

The multi-block overset grid method is a powerful technique for high-fidelity computational fluid

dynamics (CFD) simulations about complex aerospace configurations. The solution process uses

a grid system that discretizes the problem domain by using separately generated but overlapping

structured grids that periodically update and exchange boundary information through interpola-

tion. For efficient high performance computations of large-scale realistic applications using this

methodology, the individual grids must be properly partitioned among the parallel processors.

Overall performance, therefore, largely depends on the quality of load balancing. In this paper, we

present three different load balancing strategies for overset grids and analyze their effects on the

parallel efficiency of a Navier-Stokes CFD application running on an SGI Origin2000 machine.

1 Introduction

The multi-block overset grid technique [2] is a powerful method for high-fidelity computational fluid

dynamics (CFD) simulations about complex aerospace configurations. The solution process uses

a grid system that discretizes the problem domain by using separately generated but overlapping

structured grids that periodically update and exchange boundary information through Chimera

interpolation [12]. However, to reduce time-to-solution, high performance computations of large-

scale realistic applications using this overset grid methodology must be performed efficiently on

1



state-of-the-art parallel supercomputers. Fortunately, a message passing paradigm can be readily

employed to exploit coarse-grained parallelism at the grid level as well as communicate boundary

data between distributed overlapping grids.

The parallel efficiency of the overset approach, however, depends upon the proper distribution of

the computational workload and the communication overhead among the processors. Applications

with tens of millions of grid points may consist of many overlapping grids. A smart partitioning

of the individual grids (also known as blocks or zones) among the processors should therefore not

only consider the total number of grid points, but also the size and connectivity of the inter-grid

data. In fact, to be more accurate, the computational and communication times ought to be used

to perform the load balancing. Major challenges during the clustering process may arise due to the

wide variation in block sizes and the disparity in the number of inter-grid boundary points.

In this paper, we present three different load balancing strategies for overset grid applications.

The first uses a simple bin-packing algorithm to maintain uniform computational loads across

processors while retaining some degree of connectivity among the grids assigned to each processor.

The other two load balancing techniques are more sophisticated and based on graph partitioning.

One uses the spectral bisection algorithm available within the Chaco package [5] to balance processor

workloads and minimize total communication. The other uses a task assignment heuristic from

EVAH [8] to minimize the total execution time. We analyze the effects of all three methods on the

parallel efficiency of a Navier-Stokes CFD application called OVERFLOW-D [9]. Our experiments

are conducted on an SGI Origin2000 machine at NASA Ames Research Center using a test case

that simulates complex rotorcraft vortex dynamics. The grid system consists of 857 blocks and

approximately 69 million grid points. Results indicate that graph partitioning-based strategies

perform better than a naive bin-packing algorithm and that the EVAH task assignment heuristic

is generally superior to the Chaco spectral technique.

The remainder of this paper is organized as follows. Section 2 provides a brief description of

the OVERFLOW-D overset grid application. The three load balancing techniques are described in

Section 3. Parallel performance results are presented and critically analyzed in Section 4. Finally,

Section 5 concludes the paper with a summary and some key observations.

2



Four overset grids
2

z
Group 2

Intra−group exchanges

Donor
Receiver

Group 1

Inter−group exchanges

z

3
z

0
z

1

(a) (b)

Figure 1: (a) Example of an overset grid system; (b) schematic of intra-group and inter-group

communication.

2 Overset Grid Application

In this section, we provide an overview of the overset grid CFD application called OVERFLOW-D,

including the basics of its solution process, the Chimera interpolation of inter-grid boundary data,

and a message-passing parallelization model.

2.1 Solution Process

The high-fidelity overset grid application called OVERFLOW-D [9] is a special version of OVER-

FLOW [2] that owes its popularity within the aerodynamics community due to its ability to handle

complex configurations. These designs typically consist of multiple geometric components, where

individual body-fitted grids can be constructed easily about each component. The grids are either

attached to the aerodynamics configuration (near-body) or detached (off-body). The union of all

near- and off-body grids covers the entire computational domain. An overset system consisting of

four grids (z0, z1, z2, and z3) is shown in Fig. 1(a).

Both OVERFLOW and OVERFLOW-D use a Reynolds-averaged Navier-Stokes solver, aug-

mented with a number of turbulence models. However, unlike OVERFLOW which is primarily

meant for static grid systems, OVERFLOW-D is explicitly designed to simplify the modeling of

components in relative motion (dynamic grid systems). For example, in typical rotary-wing prob-

lems, the near-field is modeled with one or more grids around the moving rotor blades. The code

3



then automatically generates Cartesian background (wake) grids that encompass these curvilinear

near-body grids. At each time step, the flow equations are solved independently on each zone in

a sequential manner. Overlapping boundary inter-grid data is updated from previous solutions

prior to the start of the current time step using a Chimera interpolation procedure [12]. The code

uses finite differences in space, with a variety of spatial differencing and implicit/explicit temporal

time-stepping.

2.2 Chimera Interpolation

The Chimera interpolation procedure [12] determines the proper connectivity of the individual

grids. Adjacent grids are expected to have at least a one-cell (single fringe) overlap to ensure the

continuity of the solutions; for higher-order accuracy and to retain certain physical features in the

solution, a double fringe overlap is sometimes used [13]. A program named Domain Connectivity

Function (DCF) [10] computes the inter-grid donor points that have to be supplied to other grids

(see Fig. 1). The DCF procedure is incorporated into the OVERFLOW-D code and fully coupled

with the flow solver. All boundary exchanges are conducted at the beginning of every time step

based on the interpolatory updates from the previous time step. In addition, for dynamic grid

systems, DCF has to be invoked at every time step to create new holes and inter-grid boundary

data.

2.3 Message Passing Parallelization

A parallel message passing (based on MPI) version of the OVERFLOW-D application has been

developed around its multi-block feature which offers a natural coarse-grained parallelism [16].

The top-level computational logic of the sequential code consists of a time-loop and a nested grid-

loop. Within the grid-loop, solutions are obtained on the individual grids with imposed boundary

conditions, where the Chimera interpolation procedure successively updates inter-grid boundaries

after computing the numerical solution on each grid. Upon completion of the grid-loop, the solution

is advanced to the next time step by the time-loop. The overall procedure may be thought of as a

Gauss-Seidel iteration.

To facilitate parallel execution, a grouping strategy is required to assign each grid to an MPI

process. The total number of groups, G, is equal to the total number of MPI processes, P . Since

a grid can only belong in one group, the total number of grids, Z, must be at least equal to P .

If Z is larger than P , a group will consist of more than one grid. However, the parallel efficiency

4



of the overset approach depends critically on how the grouping is performed. In other words, the

individual grids must be partitioned among the processes so that the computational workload is

balanced and the communication overhead is minimized. Three different techniques for clustering

grids into groups in a load balanced fashion are discussed in Section 3.

In the MPI version of OVERFLOW-D, the grid-loop is therefore split into two nested loops: one

over the groups (called the group-loop) and the other over the grids within each group. Since each

MPI process is assigned to only one group, the group-loop is performed in parallel, with each process

performing its own sequential grid-loop. The inter-grid/intra-group boundary updates among the

grids within each group are conducted as in the serial case. However, inter-group exchanges between

the corresponding processes are performed via MPI calls using send/receive buffers where donor

points from grids in one group contribute to the solution at receiver points in another group (see

Fig. 1(b)). The communication can be synchronous or asynchronous, but the choice significantly

affects the MPI programming model.

The current version of OVERFLOW-D uses asynchronous message passing that relaxes the

communication schedule in order to hide latency. Unlike the original synchronous model [16],

these non-blocking invocations place no constraints on each other in terms of completion. Receive

completes immediately, even if no messages are available, and hence allows maximal concurrency.

In general, however, control flow and debugging can become a serious problem if, for instance,

the order of messages needs to be preserved. Fortunately, in the overset grid application, the

Chimera boundary updates take place at the completion of each time step, and the computations

are independent of the order in which messages are sent or received. Being able to exploit this fact

allows us to easily use asynchronous communication within OVERFLOW-D.

3 Load Balancing Strategies

Proper load balancing is critically important for efficient parallel computing. The objective is

to distribute equal computational workloads among the processors while minimizing the inter-

processor communication cost. On a given platform, the primary procedure that affects the load

balancing of an overset grid application is the grid grouping strategy. To facilitate parallel execution,

each grid must be assigned to an MPI process. In other words, the Z grids need to be clustered

into G groups, where G is equal to the total number of processes, P . Unfortunately, the sizes of

the Z grids may vary substantially and there may be wide disparity in the number of inter-grid

5



boundary points. Both these factors complicate the grouping procedure and affect the quality of

overall load balance.

In this section, we present three different grouping strategies for overset grid applications. The

first uses a simple bin-packing algorithm while the other two are more sophisticated techniques

based on graph partitioning. All three methods depend only on the characteristics of the grids

and their connectivity; they do not take into account the topology of the physical processors. The

assignment of groups to processors is somewhat random, and is taken care of by the operating

system usually based on a first-touch strategy at the time of the run.

3.1 Bin-Packing Algorithm

The original parallel version of OVERFLOW-D uses a grid grouping strategy based on a bin-packing

algorithm [16]. It is one of the simplest clustering techniques that strives to maintain a uniform

number of “weighted” grid points per group while retaining some degree of connectivity among

the grids within each group. Prior to the grouping procedure, each grid is weighted depending on

the physics of the solution sought. The goal is to ensure that each weighted grid point requires

the same amount of computational work. For instance, the execution time per point belonging to

near-body grids requiring viscous solutions is higher than that for the inviscid solutions of off-body

grids. The weight can also be deduced from the presence or absence of a turbulence model. The

bin-packing algorithm then sorts the grids by size in descending order, and assigns a grid to every

empty group. Therefore, at this point, the G largest grids are each in a group by themselves. The

remaining Z −G grids are then handled one at a time: each is assigned to the smallest group that

satisfies the connectivity test with other grids in that group. The connectivity test only inspects for

an overlap between a pair of grids, regardless of the size of the boundary data or their connectivity

to other neighboring grids. The process terminates when all grids are assigned to groups.

3.2 Chaco Graph Partitioning Heuristic

Graph partitioning has been used in many areas of scientific computing for the purpose of load

balancing. For example, it is frequently utilized to order sparse matrices for direct solutions, de-

compose large parallel computing applications, and optimize VLSI circuit designs. It is particularly

popular for load balancing parallel CFD calculations on unstructured grids [15] and handling dy-

namic solution-adaptive irregular meshes [1].

As an analogy to this unstructured-grid approach, we can construct a graph representation of

6



the OVERFLOW-D overset grid system. The nodes of the graph correspond to the near- and off-

body grids, while an edge exists between two nodes if the corresponding grids overlap. The nodes

are weighted by the weighted number of grid points and the edges by the communication volume.

Given such a graph with Z nodes and E edges, the problem is to divide the nodes into G sets such

that the sum of the nodal weights in each set are almost equal while the sum of the cut edges’

weights is minimized. Such a grouping strategy is, in theory, more optimal than bin-packing in that

the grids in each group enjoy higher intra-group dependencies with fewer inter-group exchanges.

Two popular graph partitioning software packages have been interfaced with OVERFLOW-D.

The first is METIS [7], a widely used multilevel partitioner that first reduces the size of the graph

by collapsing edges, then partitions the coarse graph, and finally projects it back to the original.

Unfortunately, METIS is primarily suitable for large graphs and does not perform well with overset

grid systems since the graph representations usually contain at most a few hundred nodes.

The second package, called Chaco [5], includes a variety of heuristic partitioning algorithms

based on inertial, spectral, and Kernighan-Lin (KL) multilevel principles, as well as a few other

simpler strategies. All algorithms employ global partitioning methods, but KL is a local refinement

technique that can be coupled to global methods to improve partition quality. We have experi-

mented with several Chaco partitioners, but the results reported in this paper were all obtained

using the spectral algorithm. Spectral methods use the eigenvectors of the Laplacian matrix of the

graph to partition it. The spectral algorithm in Chaco is a weighted version of recursive spectral

bisection (RSB) [11] and uses a Lanczos-based eigensolver. A detailed description of the algorithm

can be found in [6].

3.3 EVAH Task Assignment Heuristic

The other graph partitioning-based algorithm that we have implemented in OVERFLOW-D to

address the grid grouping problem uses the EVAH package [8]. EVAH consists of a set of al-

location heuristics that considers the constraints inherent in multi-block CFD problems. It was

initially developed to predict the performance scalability of overset grid applications on large num-

bers of processors, particularly within the context of distributed grid computing across multiple

resources [3]. In this work, we have modified EVAH to cluster overset grids into groups while taking

into account their relative overlaps. The overall goal is to minimize the total execution time.

Among several heuristics that are available within EVAH, we have used the one called Largest

Task First with Minimum Finish Time and Available Communication Costs (LTF MFT ACC). In

7



begin procedure LTF MFT ACC

1: sort tasks zi, i = 1, 2, . . . Z in descending order by size (LTF policy)

2: for each processor pj, j = 1, 2, . . . P do T (pj) = 0

3: for each sorted task zi, i = 1, 2, . . . Z do

3.1: assign task zi to processor pj with minimum T (pj) (LTF MFT policy)

compute T (pj) = T (pj) + Xi

3.2: for each task zr ∈ R(zi) assigned to processor pk 6= pj do T (pj) = T (pj) + Cir

3.3: for each task zd ∈ D(zi) assigned to processor pm 6= pj do T (pm) = T (pm) + Cdi

4: end for

end procedure

Figure 2: Outline of the LTF MFT ACC task assignment heuristic from EVAH.

the context of the current work, a task is synonymous with a block in the overset grid system.

The size of a task is defined as the computation time for the corresponding block. LTF MFT ACC

is constructed from the basic Largest Task First (LTF) policy that sorts the tasks in descending

order by size. LTF is then enhanced by the systematic integration of the status of the proces-

sors in the form of Minimum Finish Time (LTF MFT). Finally, because of the overhead involved

due to data exchanges between neighboring zones, LTF MFT is further augmented to obtain the

LTF MFT ACC task assignment heuristic. To model their impact on the overall execution time,

LTF MFT ACC utilizes communication costs which are estimated from the inter-grid data volume

and the interprocessor communication rate. A procedure has been developed to interface the DCF

subroutine of OVERFLOW-D with EVAH heuristics. An outline of the LTF MFT ACC procedure

is presented in Fig. 2.

It is easiest to explain the LTF MFT ACC grouping strategy by using a simple example and then

stepping through the procedure in Fig. 2. Figure 3(a) shows a graph representation of the overset

grid system in Fig. 1(a) that is being partitioned across two processors. The computational time for

block zi is denoted as Xi and shown for all four blocks in Fig. 3(a). Similarly, the communication

overhead from block zd (donor) to another block zr (receiver) is denoted as Cdr and shown for all

inter-grid data exchanges along the graph edges. In step 1, the four blocks are sorted in descending

order by computational time; hence the order is: z3, z2, z0, z1. In step 2, the total execution times

of the two processors are initialized: T (p0) = T (p1) = 0. Step 3 has to be executed four times since

8



1: sorted z3, z2, z0, z1 3.1: z0 → p1

2: T (p0) = T (p1) = 0 T (p1) = 64 + 50 = 114
3.1: z3 → p0 3.2: T (p1) = 114 + 3 = 117

T (p0) = 0 + 75 = 75 3.3: T (p0) = 79 + 2 = 81
3.1: z2 → p1 3.1: z1 → p0

T (p1) = 0 + 60 = 60 T (p0) = 81 + 40 = 121
3.2: T (p1) = 60 + 4 = 64 3.2: T (p0) = 121 + 1 = 122
3.3: T (p0) = 75 + 4 = 79 3.2: T (p0) = 122 + 1 = 123

3.3: T (p1) = 117 + 3 = 120
3.3: T (p1) = 120 + 2 = 1221

4

2

2

2
2

1

3

3

1 4

X

z
1

0
z

0

= 50X

z

3

= 75X
3

= 40

z

2

= 60X
2

(a) (b)

Figure 3: (a) Graph representation of overset grid system in Fig. 1; (b) stepping through the
LTF MFT ACC procedure in Fig. 2.

we have four grids that must be grouped. Block z3 is assigned to processor p0 and T (p0) = 75 in

step 3.1. Since no other blocks have yet been assigned, steps 3.2 and 3.3 are not executed.

Now z2 must be mapped to a processor. According to the LTF MFT policy, z2 is assigned to the

processor that currently has the smallest total execution time; thus, z2 goes to p1 and T (p1) = 60

in step 3.1. In step 3.2, we need to look at all grids assigned to processors other than p1 that

are also receivers of inter-grid data from z2. This set of grids is denoted as R(z2) in Fig. 2. The

graph in Fig. 3(a) shows that z1 and z3 are in R(z2); however, z1 is still unassigned. Since z3

belongs to p0, the communication overhead C23 is added to T (p1); hence, T (p1) = 64. Similarly,

in step 3.3, the set D(z2) consists of grids that are donors of inter-grid data to z2. Because z1 is

unassigned and z3 is mapped to p0, T (p0) is updated with C32; thus, T (p0) = 79. The remainder

of the grouping procedure is shown in Fig. 3(b). Notice that the parallel execution time is 123

(maxj T (pj)) whereas the serial execution time is 225 (
∑

i Xi).

One important advantage of EVAH over standard graph partitioners like Chaco is that EVAH

is able to handle directed graphs. This is critical for overset grid systems where the volume of inter-

grid data is not necessarily symmetric between two overlapping grids. For example, C01 6= C10 in

Fig. 3. For our experiments with Chaco, we generated undirected graphs by collapsing parallel

edges and setting the edge weight to be the average of the two weights. Therefore, C01 and C10

would be replaced by a single undirected edge with weight 1.5.

9



(a) (b)

Figure 4: (a) A cut through the overset grid system surrounding the hub and rotors; (b) computed

vorticity magnitude contours on a cutting plane located 45o behind the rotor blade.

4 Experimental Results

The CFD problem used for the experiments in this paper is a Navier-Stokes simulation of vortex

dynamics in the complex wake flow region around hovering rotors [14]. The Cartesian off-body

wake grids surround the curvilinear near-body grids with uniform resolution, but become gradually

coarser upon approaching the outer boundary of the computational domain. The overset grid

system consists of 857 blocks and approximately 69 million grid points; Fig. 4(a) shows a cut

through it. Figure 4(b) presents computed vorticity magnitude contours on a cutting plane located

45o behind the rotor blade. All experiments were run on the 512-processor 400 MHz SGI Origin2000

shared-memory system at NASA Ames Research Center. Due to the size of the test problem, our

runs were conducted for only 100 time steps. The timing results are averaged over the number of

iterations and given in seconds.

Table 1 shows a comparison of the three load balancing strategies: bin-packing, Chaco, and

EVAH, for a range of processor sets. The execution time Texec is the average time required to

solve every time step of the application, and includes the computation, communication, Chimera

interpolation, and processor idle times. The average computation (T avg
comp) and communication

(T avg
comm) times over P processors are also shown. Finally, the maximum computation (T max

comp) and

communication (T max
comm) times are reported and used to measure the quality of load balancing for

each run. The computation load balance factor (LBcomp) is the ratio of T max
comp to T avg

comp, while the

10



communication load balance factor (LBcomm) is the ratio of T max
comm to T avg

comm. Obviously, the closer

these factors are to unity, the higher is the quality of load balancing.

Table 1: Run times (in seconds) and load imbalance factors with bin-packing, Chaco, and EVAH

grid grouping strategies

Bin-packing algorithm

P Texec Tmax
comp T avg

comp Tmax
comm T avg

comm LBcomp LBcomm

32 32.0 29.3 23.0 1.30 0.90 1.27 1.44
64 13.5 11.9 10.8 0.67 0.55 1.10 1.22
128 7.6 6.2 5.4 0.60 0.52 1.15 1.15
256 5.5 3.7 2.8 0.88 0.50 1.32 1.76
320 4.7 2.9 2.2 0.57 0.46 1.32 1.24
384 4.7 2.9 1.9 0.99 0.56 1.53 1.77
448 4.5 3.0 1.7 0.85 0.46 1.76 1.85

Chaco graph partitioning heuristic

P Texec Tmax
comp T avg

comp Tmax
comm T avg

comm LBcomp LBcomm

32 26.9 23.6 21.0 0.80 0.70 1.12 1.14
64 13.7 12.3 11.0 0.42 0.37 1.12 1.14
128 7.5 6.5 5.4 0.32 0.28 1.20 1.14
256 4.7 3.9 2.7 0.26 0.21 1.44 1.24
320 4.6 3.3 2.2 0.34 0.28 1.50 1.21
384 4.9 3.5 1.9 0.42 0.34 1.84 1.24
448 4.5 3.1 1.7 0.41 0.35 1.82 1.17

EVAH task assignment heuristic

P Texec Tmax
comp T avg

comp Tmax
comm T avg

comm LBcomp LBcomm

32 26.2 23.3 21.8 1.50 1.28 1.07 1.17
64 13.0 11.3 10.8 0.76 0.66 1.05 1.15
128 7.3 5.8 5.4 0.99 0.89 1.07 1.11
256 4.8 3.2 2.7 0.77 0.67 1.19 1.15
320 4.4 3.0 2.3 0.76 0.65 1.30 1.17
384 4.7 3.1 1.9 0.97 0.55 1.63 1.76
448 4.3 3.0 1.7 0.73 0.64 1.76 1.14

Notice that the computational workload for all three strategies is identical as is evidenced by

the fact that T avg
comp is essentially the same for a given value of P . However, Texec is almost always

the lowest when using the EVAH-based task assignment heuristic for load balancing. This is

expected since the goal of this strategy is to minimize the total execution time. On the other hand,

the communication times T max
comm and T avg

comm for Chaco are about a factor of two lower than the

corresponding timings for the bin-packing algorithm and EVAH. This is because standard graph

11



partitioners like Chaco strive to minimize total communication time.

The overall quality of computational workload balance for the three strategies can be observed

by comparing LBcomp from Table 1. EVAH returns the best results, demonstrating its overall

superiority. Rather surprisingly, Chaco performs worse than bin-packing. We believe that this is

because graph partitioners are usually unable to handle small graphs containing only a few hundred

nodes. Obviously, LBcomp increases with P since load balancing becomes more challenging with a

fixed problem size. Results in Table 1 also show that the quality of communication load balancing

LBcomm is a big drawback of the bin-packing algorithm. Both Chaco and EVAH improve this

factor considerably. In fact, except for P = 384, LBcomm using EVAH is at most 1.17.

It should be noted here that though we are evaluating LBcomp from the computational run

times, the grid grouping strategies are all based on the number of weighted grid points. The three

left plots in Fig. 5 show the distribution of weighted grid points across 64, 128, and 256 processors

for all three load balancing strategies. The “predicted” values of LBcomp are also reported and

are typically somewhat better than those computed from actual run times (see Table 1), but

demonstrate the same overall trend.

The three plots on the right in Fig. 5 present a more detailed report of the execution, computa-

tion, and communication times per processor for P = 64, 128, and 256. Due to the synchronization

of MPI processes, Texec is independent of the processor ID and are shown at the top of the plot

area for each case. For the sake of clarity, Tcomm is shown at a different scale indicated by the right

vertical axis. Observe that the EVAH Tcomp curves are consistently much smoother than those for

the other grouping strategies. For the Tcomm curves, both Chaco and EVAH show a much more

uniform distribution across processors than bin-packing.

Scalability beyond 256 processors is generally poor as a result of using a fixed problem size that

is independent of the number of processors. For example, when P = 448, each group contains, on

average, only two grids (since Z = 857). With such a low number of blocks per group, the effective-

ness of any strategy is diminished; moreover, the communication overhead relative to computation

increases substantially. For instance, with low processor counts, the communication-to-computation

ratio is less than 6%, but grows to more than 37% with higher counts.

12



Processor ID

W
ei

gh
te

d
gr

id
po

in
ts

8 16 24 32 40 48 56 64

6.
0E

+
05

8.
0E

+
05

1.
0E

+
06

1.
2E

+
06

1.
4E

+
06

EVAH

Bin-packing
Chaco 1.06

1.08

1.02

Predicted LBcomp

Processor ID

T
C

om
p

&
T

E
xe

c
(s

ol
id

lin
es

)

T
C

om
m

(d
as

he
d

lin
es

)

8 16 24 32 40 48 56 64
2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.4

0.6

0.8

1

1.2

1.4

Chaco
Bin-packing

EVAH

Processor ID

W
ei

gh
te

d
gr

id
po

in
ts

16 32 48 64 80 96 112 128

2.
0E

+
05

4.
0E

+
05

6.
0E

+
05

8.
0E

+
05

EVAH

Bin-packing
Chaco 1.11

1.15

1.03

Predicted LBcomp

Processor ID

T
C

om
p

&
T

E
xe

c
(s

ol
id

lin
es

)

T
C

om
m

(d
as

he
d

lin
es

)

16 32 48 64 80 96 112 128
2

3

4

5

6

7

8

0.4

0.8

1.2

1.6

2

2.4

2.8

Chaco
Bin-packing

EVAH

Processor ID

W
ei

gh
te

d
gr

id
po

in
ts

32 64 96 128 160 192 224 256

1.
0E

+
05

2.
0E

+
05

3.
0E

+
05

4.
0E

+
05

5.
0E

+
05

EVAH

Bin-packing
Chaco 1.25

1.28

1.15

Predicted LBcomp

Processor ID

T
C

om
p

&
T

E
xe

c
(s

ol
id

lin
es

)

T
C

om
m

(d
as

he
d

lin
es

)

32 64 96 128 160 192 224 256
0

1

2

3

4

5

6

0.4

0.8

1.2

1.6

2

2.4

Chaco
Bin-packing

EVAH

Figure 5: Distribution of weighted grid points (left) and execution, computation, and communica-

tion times (right) per processor for P = 64, 128, and 256 (top to bottom).

13



5 Summary and Conclusions

The multi-block overset grid technique is a powerful tool for solving complex realistic computational

fluid dynamics (CFD) problems at high fidelity; however, parallel performance depends critically

on the quality of load balancing. In this paper, we presented and analyzed three different load

balancing strategies for overset grid applications. The first used a simple bin-packing algorithm

while the other two were based on graph partitioning techniques.

All experiments were performed with the OVERFLOW-D Navier-Stokes code on a 512-processor

Origin2000 system at NASA Ames Research Center. The CFD application was the simulation of

vortex dynamics in the complex flow region around hovering rotors. The grid system consisted of

857 blocks and almost 69 million grid points. Overall results indicated that graph partitioning-based

strategies perform better than naive bin-packing due to their more comprehensive consideration

of grid connectivity. However, standard graph partitioners did not perform too well because of

their inability to effectively handle small graphs. Instead, a grid clustering technique based on

task assignment heuristics with the goal of reducing the total execution time performed extremely

favorably by improving the communication balance.

Further improvements in the scalability of the overset grid methodology could be sought by

using a more sophisticated parallel programming paradigm especially when the number of blocks Z

is comparable to the number of processors P , or even when P > Z. One potential strategy that can

be exploited on SMP clusters is to use a hybrid MPI+OpenMP multilevel programming style [4].

This approach is currently under investigation.

Acknowledgements

The work of the first author was supported by NASA Ames Research Center under Contract Num-

ber DTTS59-99-D-00437/A61812D with AMTI/CSC. The work of the third author was supported

by the Texas Tech University Excellence Fund.

References

[1] R. Biswas, S.K. Das, D.J. Harvey, and L. Oliker, “Parallel dynamic load balancing strategies

for adaptive irregular applications,” Applied Mathematical Modelling , 25 (2000) 109–122.

14



[2] P.G. Buning, W. Chan, K.J. Renze, D.Sondak, I.T. Chiu, J.P. Slotnick, R. Gomez, and D.

Jespersen, Overflow User’s Manual Version 1.6au, NASA Ames Research Center, Moffett

Field, CA, 1995.

[3] M.J. Djomehri, R. Biswas, R.F. Van der Wijngaart, and M. Yarrow, “Parallel and distributed

computational fluid dynamics: Experimental results and challenges,” in: Proc. 7th Intl. High

Performance Computing Conf., LNCS 1970 (2000) 183–193.

[4] M.J. Djomehri and H. Jin, “Hybrid MPI+OpenMP programming of an overset CFD solver

and performance investigations,” NASA Ames Research Center, NAS Technical Report NAS-

02-002 (2002).

[5] B. Hendrickson and R. Leland, The Chaco User’s Guide Version 2.0 , Tech. Rep. SAND95-

2344, Sandia National Laboratories, Albuquerque, NM, 1995.

[6] B. Hendrickson and R. Leland, “An improved spectral graph partitioning algorithm for map-

ping parallel omputations,” SIAM J. on Scientific Computing , 16 (1995) 452–469.

[7] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular

graphs,” SIAM J. on Scientific Computing , 20 (1998) 359–392.

[8] N. Lopez-Benitez, M.J. Djomehri, and R. Biswas, “Task assignment heuristics for distributed

CFD applications,” in: Proc. 30th Intl. Conf. on Parallel Processing Workshops, (2001) 128–

133.

[9] R. Meakin, “On adaptive refinement and overset structured grids,” in: Proc. 13th AIAA

Computational Fluid Dynamics Conf., Paper 97-1858 (1997).

[10] R. Meakin and A.M. Wissink, “Unsteady aerodynamic simulation of static and moving bodies

using scalable computers,” in: Proc. 14th AIAA Computational Fluid Dynamics Conf., Paper

99-3302 (1999).

[11] H.D. Simon, “Partitioning of unstructured problems for parallel processing,” Computing Sys-

tems in Engineering , 2 (1991) 135–148.

[12] J. Steger, F. Dougherty, and J. Benek, “A Chimera grid scheme,” ASME FED , 5 (1983).

[13] R.C. Strawn and J.U. Ahmad, “Computational modeling of hovering rotors and wakes,” in:

Proc. 38th AIAA Aerospace Sciences Mtg., Paper 2000-0110 (2000).

15



[14] R.C. Strawn and M.J. Djomehri, “Computational modeling of hovering rotor and wake aero-

dynamics,” in: Proc. 57th Annual Forum of the American Helicopter Society , (2001).

[15] R. Van Driessche and D. Roose, “Load balancing computational fluid dynamics calculations

on unstructured grids,” in: Parallel Computing in CFD , AGARD-R-807 (1995) 2.1–2.26.

[16] A.M. Wissink and R. Meakin, “Computational fluid dynamics with adaptive overset grids on

parallel and distributed computer platforms,” in: Proc. Intl. Conf. on Parallel and Distributed

Processing Techniques and Applications, (1998) 1628–1634.

16


